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Nonlinear internal gravity waves in a rotating fluid 
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The interaction between internal gravity waves in a rotating frame and the mean 
flow is discussed for the case when the properties of the mean flow vary slowly on 
a scale determined by the local wave structure. The principle of conservation of 
wave action is established. It is shown that the main effect of the waves on the 
Lagrangian mean velocity is due to an appropriate ‘radiation stress’ tensor. 
A circulation theorem and a potential-vorticity equation are derived for t h e  mean 
velocity. 

1. Introduction 
The interaction between internal gravity waves and the mean velocity (when 

the length scale of the waves is much shorter than that of the mean flow) was 
first examined in detail by Bretherton (1969) for small amplitude waves. Subse- 
quently, this work was extended to finite amplitude waves, incorporating the 
perturbation effects of friction and compressibility, by Grimshaw (1972, 1974). 
The purpose of this paper is to discuss this interaction in a rotating frame. Two 
significant differences emerge. First, because of the rotation, the mean velocity 
is constrained to be in approximate geostrophic balance and departures from 
this balance are determined by a ‘radiation stress’ tensor, derived from the 
waves. This tensor is just the local average over the waves of the particle displace- 
ment with the pressure gradient. Second, the equations for the mean motion 
adopt their simplest form when expressed in terms of Lagrangian mean velocities 
(cf. Brethcrton 1971); indeed, the equations for the mean Eulerian velocity 
contain buoyancy flux terms due to the waves, as well as Reynolds stresses. 
However, when Lagrangian mean velocities are introduced, these combine to form 
a single ‘radiation stress’ tensor. 

I n  3 2, the concept of a modulated wave is defined, the Enlerian mean equations 
are derived and the conservation of wave action is established. In  $ 3  the 
Lagrangian mean velocity is introduced and the equations for the mean motion 
simplified. In  $ 4 the transport equations (i.e. the equations for the mean motion 
plus the equation for the conservation of wave action) are discussed, a circulation 
theorem is established and it is shown that the effect of the waves on the mean 
flow may be described by a forcing term in the potential-vorticity equation. 

We shall complete this section with a description of the terminology and the 
equations of motion. Let Ll be a length scale characterizing the wavelength and 
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let Syl be the time scale, where Nl is a typical value of the Brunt-Vaisalla 

frequency. Then € = N2, LJg (1.1) 

is a siiiall parameter, being the ratio of a typical wavelength to the length scale 
of the mean density profile; i t  will be assumed that e also characterizes the ratio 
of a typical wavelength to the length scale of t,he mean velocity field. If c1 is 
a typical value of the speed of sound, then 

is also a small parameter, being a ratio of Ll to the 'scale height' of the atmo- 
sphere, and indicative of the effects of compressibility. The ratio F/e  is a property 
of the mean state of the fluid; for an isothermal ideal gas F/e = (y  - l)-l, where 
y is the ratio of the specific heats; it will be assumed that F is O(e). Ifp,  is a typical 
value of the viscosity, then the third relevant small pzrameter is 

where p1 is a typical value of the density; E measures the frictional effects and it 
will be assumed that E is ( I ( € ) .  The velocity scale will be NILl and the pressure 
scale will be plgL,/c (the hydrostatic scale for the mean state). 

The equations governing the conservation of mass, momentum and entropy, 
referred to  a frame rotating with angular velocity 51, are, respectively, using 
non-dimensional variables, d p p t  +pv .  = 0, 

F = gLJC2, (1.2) 

E = Pl lPl  Nl L?? (1.3) 

(1.4) 

(1.5) p du/dt +p251 x u + E - ~ V ~  + s-lpk = EpV2u + . . . , 
dp F 1 dp  
dt € c2 at 
___-- -  - cTEkV2p+ ... 

Here u is the velocity relative to  t'he rotat'ing frame, p is the pressure, p the 
density, c the speed of sound (a prescribed function of p and p ) ,  and k is a unit 
vector in the vertical (2) direction; ,u is the viscosity, k the thermal diffusivity 
(both prescribed functions of p and p)  and c~ is a constant, the Prandtl number, 
being the ratio of a typical value of the thermal diffusivity to a typical value of the 
viscosity. The terms omitted on the right-hand sides of (1.5) and (1.6) are O(E)  
compared with the terms which have been retained. The centrifugal cffects of 
rotation have been absorbed into the gravitatioiial term (gk in dimensional 
variables), which is assunled to  be a constant. The IL' and y axes will be in the 
easterly and northerly directions respectively; thus 

Note that 2Q2, and 2!2,. are the non-dimensional horizontal and vertical com- 
ponents of the Coriolis parameter, which has been scaled by Nl. 

251 = (0, 2QH,  2Qrr) .  (1.7) 

2. Modulated waves 
We shall show that the equations of motion possess an asymptotic solution 

which is locally a plane sinusoidal wave but whose properties vary on length 
and t8ime scales O(E-1). The procedure used is similar to that developed by Grim- 
shaw (1974) for int8ernal gravity waves in t'he absence of rotation. Thus let 

X = ex, T = et, (2 .1 )  
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and seek a solution of the form 

(2.2) 

u = V(X,T;E)+V(O;X,T;E),  
p = R(X, T ;  E )  ( 1  + E Y ( B ;  X ,  T ;  E ) } ,  

p = Q ( X ,  T ;  6 )  + E2q(O;  X ,  2'; E ) ,  

where the phase 8 is defined to be that the local frequency o = - 8, and the local 
wavenumber n = V,B are functions of ( X ,  T )  and so are slowly varying. Thus 

6 = e-lO(X, T ;  E )  (2.3) 
and = -0 T ,  n =  vo. (2.4) 
(In this and subsequent sections all spatial and time derivatives are with respect 
to X and T.) v, r and q are periodic in 6 with period 27r and have zero mean; thus 
V ,  R and Q are the mean velocity, density and pressure respectively. All these 
variables are 0(1) with respect to E ,  and are assumed to possess asymptotic 
power-series expansions in E .  Note that i t  has been anticipated that the density 
and pressure fluctuations will be O ( E )  and 0 ( c 2 )  respectively (the appropriate 
scaling for internal gravity waves). 

Substitution of (2.2) into (1.4)-(1.6) gives 

B(1+ €7) { E  DVIDT + EV.  VV+ dvldt + 2S2 x V + 2S2 x v} 
+ c'VQ + %q@ + EVq + E-lRk + Rrk = E ~ ~ K ~ v , ,  + . . . , (2.6) 

1DR v.VR +-+---- 
fZDT R 

where 

= ah'&K2rBB+ ... , (2.7) 

d a a o  
a8 ae DT 2 = -w*-+v.n-+E-+Ev.V, 

DIDT = a/aT + V .  V ,  (2.9) 
(2.10) w* = w - w . V, the intrinsic frequency, 

and t.he omitted terms are 0(e2 ) ) ;  dldt is the (exact) time derivative following 
a fluid particle. Here K denotes the magnitude of n. In  (2.7) C denotes c evaluated 
a t  (Q,  R)  and the differentiation of (pc2)-1 is with respect t o p  at constant pressure 
p .  In  (2.6) and (2.7), ji and L denote ,u and 1; evaluated at  (Q,  R). Equations (2.5)- 
(2.7) may now be averaged with respect to  the phase 8 over the period 2n. Let 
angular brackets denote averages: 

(2.11) 

for any variable f. Then, after some manipulation, it follows that 

DRIDT + RV . V + EV . (Rrv) = 0, (2.12) 
ER DV/DT + R2S2 x V + EV . (Rvv) + e2S2 x (Rrv) + E-~VQ + E-  lRk = O(s2) ,  

(2.13) 
- DR F DQ 

eC- DT DT+~V.(Rr~)--,- = O(E'). (2.14) 

32-2 
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Note that (2.12) is exact. These equations 2re most simply derived by first 
rewriting (1.4)-( 1.6) in conservation form, then substituting (2.2) and averaging. 
For exaniple, this procedure shows that (2.5) can be written in the form 

- ew*Rre + R{( 1 +er) x .  v}e +eRT + c2(Rr), + E V .  {R( 1 + Er) (V + v ) }  = 0 ,  

and averaging this equation produces (2.12). It follows from (2.13) that, to 
O(e2) ,  the mean state is hydrostatic and geostrophic; the horizont'al gradients of 
Q and R are also O(e)  smaller than the vertical gradients. It will be assumed 
below that Q and R are, to O(e) ,  functions of Z only; then it follows that, again 
to O(E) ,  V is horizontal and non-divergent. [It has been pointed out by Garrett 
(1968) that if Q and R depend on both Z and T to leading order in E then there 
will be an O( 1 )  vertical velocity, likewise depending on both 2 and T. This rather 
artificial case is not considered here, although it may be shown that the result 
(2.36) for the wave action is still valid for this case (cf. Grimshaw (1975b), where 
this result was derived for the linearized system).] 

The averaged equations (2.12)-(2.14) may now be subtracted from their 
respective counterparts (2.5)-(2.7) to yield the following equations for the 

(2.15) 
fluctuating variables: 

x.vt ,  = -€Io, 
(2.16) 

(2.17) 

- W*V~ + 2 8  x V +  R-lqOx +rk= -eF, 
- w*r, - N2w = - E H ,  

where (2.18), (2.19) 

N is the Brunt-Vaisala frequency, and to leading order in e is a function of 
Z alone. The right-hand sides of thesc equations are O(e) ,  and the specific expres- 
sions for Ie, F and H are, after some manipulation, 

F tu 

E GZ 
I0 = V . V - - - + + ( E ) ,  (2.20) 

F = DvlDT + V .  VV + V . {(Rvv) - (Rvv)) 

- ( I v ) ,  - w*(rv), + r2Q x V + 2 8  x {rv - ( rv ) )  

+R-1Vq-e-1R-1E~K2v,,JrO(e), (2.21) 

Dr v,.C,R V . ( R r v - ( R r v ) )  
H = - +  + DT ER - (Ir)o R 

f [&(+)I ~ 2 r i u - e - 1 a E ~ K 2 r g , + O ( e ) .  (2.22) 
F I  
E RC2 

+-- (28xV.v+cfJ"q,)+-  - 

Here and subsequently subscript H denotes a horizontal component. The constant 
of integration in the expression for I is chosen such that I has zero mean. In  
deriving these expressions, use has been made of the zero-order relations between 
v, r and q obtained by replacing the right-hand sides of (2.15)-(2.17) with zeros; 
this is justified as I, F and H are used below only after they have been evaluated 
to lowest order in e. Some use has also been made of the fact that Q and R are 
functions of 2 only, to leading order in e ,  and so, for example, V, R is O(E)  and 
DQlDT is O(s) .  
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Plane-wave solution 

In the limit s+O (2.15)-(2.17) with their right-hand sides replaced by zeros 
have a plane-wave solution. In  this limit, the equations are ordinary differential 
equations in the phase 8, and may be integrated keeping X and T (ie.  N 2 ,  R, 
2S2, w* and x )  constant. The solution is 

r = d 2 s i n ( 8 + @ ) ,  zu = - a ~ ' ~ c o s ( 8 + @ ) ,  (2.23), (2.24) 

where 

x x k  
(2.25) 

(2.26) 

provided that O*' = ( 2 8 .  %)' /K2 f N2K&/K2. (2.27) 

Here n = x .  k is the vertical component of x ,  K is the magnitude of x ,  and K~ is 
the magnitude of x H ,  the horizontal component of x .  The solution contains an 
arbitrary amplitude a and phase @, both of which are functions of X and T. There 
is no restriction on the magnitude of a other than the requirement that the 
zero-order solution be O(1) with respect to E ;  this is a consequence of (2.15), 
which shows that the waves are transverse, and hence are sinusoidal even though 
nonlinear. The total phase 8 + @ may be regarded as equivalent to the expansion 
of 0 in powers of E as 8 + @ = (0 + E @ ) .  Thus it would be legitimate to replace 
8+@ in (2.23) etc. by 8, and simultaneously expand 0 in powers of e ;  however 
this would lead to extra terms in I, F and H .  Here we shall retain 8 + @ in (2.23), 
etc., and assume that 0 has no explicit E dependence. 

In  (2.23), etc., the amplitude a is that of the vertical displacement of a fluid 
particle. Equation (2.27) is the familiar dispersion relation for internal gravity 
waves in a rotating fluid (Phillips 1966, p. 193), and the corresponding group 
velocity is 

The group velocity is perpendicular to the phase velocity (parallel to x ) ,  which 
is a consequence of the transverse nature of the waves. The wave energy density 
is defined to be 

€ = QR(( lVI2)+ (N2)- l ( r2) )  = i R a 2 ( ( W * K / K H ) 2  (2.29) 

and the wave action density is defined to be 

9 = &/w". (2.30) 

O(E)  solution 

At this stage, t,he amplitude a and phase @ are undetermined. Equations govern- 
ing a and $ will now be derived through the requirement that the first-order 
solution for v, r and q be periodic with period 27r and zero mean. It is to be under- 
stood that the variables r ,  etc., are expanded in powers of E ,  e.g. r = ro + wl + . . . , 
etc.; the plane-wave solution (2.23)-(2.25) corresponds to the subscript zero, 
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while the equations for the variables rl ,  etc., are (2.15)-(2.17), the variables on 
the left-hand sides of the equations being r l ,  etc., while on the right-hand sides 
of the equations, I ,  F and H are evaluated using the plane-wave variables. 
However, we shall not display these subscripts in order t o  avoid excessive nota- 
tion. Eliminating r ,  q and vII from (2.15)-(2.17) yields the equation 

tut)e+ w = cJ ,  (2.31) 

. (2.32) K&H nl,, I@ 2 8 . x x k  - I(Zfl,)(2s2.x) 
o”2K2 K2 w* K2 o*K2 

+----- 

The general solution of (2.31) consists of the complementary function, which 
will be periodic and of zero mean, plus a particular integral given by 

zu = 8 sin (0  + 9) IOeJ(O’) cos (8’ + 9) do’ - c cos (8 + $) J ( 0 ’ )  sin (8’ + $) d0’.  

(2.33) 

(2.34) 

si 
This is periodic when 

(Jsin(O+$)) = (Jcos(O+#)) = 0. 

Also, when (2.34) is satisfied, it may be verified that (2.33) has zero nleaii (note 
that J itself is periodic with zero mean). Finally, it follows easily from (2.15)- 
(2.17) that, once w has been constructed to  be periodic with zero mean, then vH, 
r and q are also periodic with zero mean. Thus conditions (2.33) are necessary 
and sufficient for the first-order solution to be periodic with zero mean (i.e. the 
asymptotic solution is well ordered). 

Recalling the zero-order solutions for v, r and q [i.e. (2.23)-(2.26)], the con- 
ditions (2.34) may be rewritten, after some manipulation, as 

(v.  F + IV+H + R-lql,) = 0,  

(vg . F + N-+, H + R-’q, I , )  = 0. 

( 2 . 3 5 ~ )  

(2.35 b )  

It is shown in appendix A that (2.35a) is just the equation for conservation of 
wave action: 

gT +v .  [ g ( C  + v)] + h K 2 g  = 0,  (2.36) 

where the dissipation coefficient h is defined by (A 9).  The conservation of wave 
action was established in the absence of rotation by Grimshaw (1974), and for the 
linearized case including rotation by Grimshaw (1975 b ) ;  it has been established 
for avariety of other (linearized) physical systems byBret,herton &Garrett (1  969). 
Equation (2.36) may be regarded as the required equation for the arnplitude. 
Equation (2.358) yields an equation for the phase $, which will not be displayed 
here as $ does not appear explicitly in any other averaged equation. 



Nonlinear. internal gravity waves in a iotating JEuid 503 

3. Transport equations : reformulation using the Lagrangian mean 
velocity 

The equations governing the mean flow variables V ,  R and Q and their inter- 
act#ion with the wave amplitude are (2.12)-(2.14) and (2.36). They are displayed 
again here for convenience: 

DRIDT i- RV . V + SV , (Rrv) = 0, (3.1) 

SR DV/DT + R251 x V + sV. (Rvv) + €251 x (Rrv) + s -~VQ f 6- ‘Rk = O(@), (3.2) 

DR F DQ -+eV.(Rrv)--- = O(e2),  DT eC2 DT (3.3) 

DFIDT + V . (cF) + A K ~ F  = O ( S ) .  (3.4) 

These are supplemented by the dispersion relation (2.27), which, by virtue of 
(2.4), is a partial differential equation for the phase 0. Here 

DIDT = alaT+V.V (3.5) 

and is the time derivative in a frame moving a t  the Eulerian mean velocity V .  
These equations show that the interaction of the waves with the mean flow 
cannot be entirely attributed to the Reynolds stress tensor (Rvv), as there is 
also a contribution from the buoyancy flux (Rrv); note that this buoyancy flux 
appears both as a mass source in (3.1) and also as an excess vortex force in (3.2). 
This has the consequence that the effect of the waves on the Eulerian mean flow 
cannot, in general, be expressed as the divergence of an appropriate ‘radiation 
stress’ tensor. However, as shown by Bretherton (1971) for certain linearized 
systems,? the introduction of a Lagrangian mean velocity will remove this 
conceptual difficulty and simplify (3.1)-(3.3). 

The Lagrangian mean velocity V ,  is defined such that an observer moving with 
velocity V records a zero mean for the particle displacements (relative to  him- 
self). If 6 denotes this particle displacement, it is shown in appendix B [(B 21) 
and (B 19)] that 

v, = v + €{(TV) + R-lV. (REV)) + O ( S 2 ) ,  (3.6) 

where - = v + O(S).  (3 .7)  

V . (RV,) = V . (RV + e(Rrv)) + 0 ( c 2 ) ,  (3.8) Hence 

there being no contribution from the term (RE,v), as i t  is an antisymmetric tensor. 
Thus ( 3 . 1 )  becomes 

where DLlDT E a/aT +VL.V. (3.10) 

t Dr 31. E. McIntyre (private communication) has also used Lagrangian mean velocities 
t o  discuss ‘radiation stress’ concepts for internal gravity waves in a rotating fluid. 
although he used the linearized equations of a Boussinesq fluid. See also McIntyre (1973) 
for another situation involving internal gravity waves in which a buoyancy flux term 
contributes t o  the mean flow, although on that occasion, the use of a Lagrangian mean 
velocity did not lead to a simple ‘radiation stress’ concept. 

DL RIDT -I- RV .VL = O(S’)), (3.9) 
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Similarly, substitution of (3.6) into (3.3) gives 

= O ( E 2 ) ,  (3.11) 

on using (2.17) and (3.7). Thus the use of V, in place of V has removed the 
buoyancy flux term from both (3.1) and (3.3). Also, in (3.4), D/DT may be re- 
placed by D,/DT, as the error in so doing is O(e) ,  and can be absorbed into the 
right-hand side. Similarly, in (2.10) [and hence in (2.4) and (2.27)], V may be 
replaced by V, with an error O(e).  It remains to examine the effect of (3.6) on 
the mean momentum equation (3.2). 

From (2.16) it follows tha,t 

(Rvv )  = ( ~ v K / w * )  - R(r,v/w*) k-  R ( v ( 2 8  x v,) /o*),  (3.12) 

and using (3.7) and (AB), 

(Rvv )  = FCK + R(rQ k - R ( v ( 2 8  x 5)). (3.13) 

Substituting (3.6) and (3.13) into (3.2) gives, after some manipulation, 

ER DLVJDT + R 2 8  x V, + c-IVQ + c l R k  +eV . (FcK) + CY. (RrQ k = O(e2). 

Also, ( K r s )  = ( F N 2 / w * )  ( k  - n X / K 2 ) ) .  (3.15) 
(3.14) 

Substituting (3.16)-(3.15) into (3.14) gives 

ER D,V,/DT + R 2 8  x V, + c l V &  + e-1 k{R + e2V.  [FPu*-~ ( k  - I L X / K ~ ) ] )  

+ e V . ( f l c X )  = O(e2). (3.16) 

Thus the Reynolds stress term (Rvv )  and the buoyancy flux (Rrv) have effec- 
tively combined to produce a ‘radiation stress’ tensor T c w ,  acting on the 
Lagrangian mean momentum equation; (3.16) has the same form as the result 
obtained by Grimshaw (1974) in the absence of rotation. Note that the tensor 
FCK arises from the first term on the right-hand side of (3.12), which may be 
rewritten as (&go); thus the ‘radiation stress’ tensor arises from the average of 
the particle displacement with the pressure gradient. The terms in (3.16) of O(E)  
and parallel to k determine an O(e2) change in the mean density R.  

We shall complete this section with an analysis of the ‘Stokes drift ’ velocityVs, 
which is just the difference between V ,  and V .  Thus, from (3.6), it follows that 

V, = V, - V = e(rv) i- eR-1V. ( R ~ V )  + 0 ( e 2 ) .  (3.17) 

But i t  may be shown that 
( rv )  = - N 2 ( w Q ,  (3.18) 

and hence 

Explicit calculation now shows that 

v,y = (F/C2) (1.Q +eV.  (EV) + O ( E 3 ) .  (3.19) 

(3.20) 
P F( 2Q.x) K x k F( 21R. K) 

’+y= @ R w * ~ 2  - E X  ( RW*K2 ) i- o ( E 2 ) .  



Nonlinear internal gravity 'tc'uves in a rotating JEuid 505 

The first term is due to the first-order effects of compressibility, and is non-zero 
even for plane waves (i.e. unmodulated waves). The second term is due primarily 
to the modulation of the wave amplitude, and will normally be most significant 
a t  the extremities of a wave packet (where the gradients of 9 are strongest). I n  
the absence of rotation, V, is O(e2).  

4. Transport equations : vorticity considerations 

the dispersion relation (2.27). For convenience, these are displayed here: 
The transport equations are now (3.9), (3.16), (3.11) and (3.4)) together with 

D V  VQ k eR LL + 2228 x V ,  +- +- 
DT 8 

D,.F/DT + V. (Fc) + AK~F = O(e) ,  

K2u:k2 = (2n. x)2 + N2&, 

w* = w-x.V,+O(e). 

Equation (4.2) shows that, to O(e), the mean flow isin hydrostatic andgeostrophic 
balance; the parameter e plays the role of a Rossby number for the mean flow. 
(Note that, since 2Q and N have been scaled by the same factor, Nl may be also 
regarded as a typical value of the angular velocity; also it has been assumed that 
glN2, is a length scale for the mean flow, and the velocity scale is NIL, thus 
e = N :  L/g may be regarded as the ratio of the velocity scale to the product of 
the large length scale and the angular velocity.) The familiar geostrophic relations 
now hold. Thus the vertical component of (4.2) determines R and the horizontal 
component of (4.2) shows that, since V ,  is horizontal to O(e), 

2Qrr RVL = k x V, Q / c  + O(e). (4.7) 

Equation (4.7) shows that 0,Q is O(e) .  Eliminating the pressure from (4.2) 
shows that 

V R x  k = -ecur1(2S2xVL)+O(e2). (4.8) 

The horizontal component of (4.8) implies that 

V, R = e 2 n .  V(k  x RV) + O(e2) ,  (4.9) 

and so V,R is O(c) .  This is just the thermal-wind equation of meteorology. 
Equation (4.1) shows that V L  is horizontally non-divergent to O(e), and from 
(4.7), - Q/eZQ, R acts as a stream function for V,. Finally the left-hand side of 
(4.3) is O(e) and determines the vertical velocity W,: 

RN2 WL = R, - (F/eC2) QT + VL. V, R + 0 ( e 2 ) .  (4.10) 
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To determine the time variation of V L  we must now examine the O ( E )  terms in 
the mean momentum equation (4.2). This is a familiar procedure for quasi- 
geostrophic systems, and the present situation may be regarded as a quasi- 
geostrophic system with a forcing term in the momentum equation due to the 
waves. Indeed the effect of the waves on the mean flow is due entirely to the 
divergence of the ‘radiation stress’ tensor S c x  in the mean momentum equation 
(4.2), together with a feedback mechanism by virtue of (4.6) and (4.4). First, 
using (4.4) and the compatibility relation (A 11) between x and w ,  i t  may be 
shown that 

V.(Fcx)+SV,w* = - D L ( x . F ) / D T - 9 V V L . x - A ~ W ,  (4.11) 

where V,w* is the explicit derivative of w* with respect to X, keeping x fixed 
(parallel to k here). Let 

U = R-i9x, (4.12) 

where RU has the dimensions of momentum and in linear theories is sometimes 
referred to as ‘wave momentum’; (4.2) becomes 

= F ( ~ ~ ~ + V V , . U + A K ~ U  ) +O(e2) .  (4.13) 

We shall now examine the nature of the forcing term on the right-hand side of 
(4.13) by, first, establishing a circulation theorem and, second, deriving a 
potential-vorticity equation. 

Let 55‘ be a circult which moves with the mean velocity V ,  (% is horizontal to 
O ( c ) ] .  Then 

(4.14) 
Now i t  may be shown t1~a.t 

$ v 2 S 2 x V L . d X  = 2Q2.ndX, (4.15) 

where 9’ is any material surface whose boundary is V and n is the normal t o  9. 
Also, it may be shown that 

- j  D U.dX = $ * ( ~ + V V , . U } . d X .  
DT v: 

Thus the circulation theorem, in the present context, is 

(4.16) 
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The last term in (4.17) is O(1). Indeed, i t  may be written in the form 

(4.18) 

A lengt,hy calculation then shows that 

- V Q x V R  - (2Q~V)VLH+{2QxV,.c~rl(28~VL)}k+O(~). (4.19) 
€2R2 E 

Here V,, is the horizontal component of V,. Since n = k + O ( E ) ,  substitution of 
(4.19) into (4.18) shows that this term is O(1). Of the remaining t,wo terms on the 
right-hand side of (4.17)) the first describes the instantaneous production of mean 
vorticity in the vicinity of a wave packet due to U ,  and the second describes the 
permanent production of mean vorticity by frictional effects associated with the 
passage of a wave packet. 

I n  quasi-geostrophic systems, the customary procedure is to expand all 
variables in powers of E :  

Q = Q,+EQ,+ ..., R = Ro+eRl+ ..., V, = Vo+sVl+ ... . (4.20) 

Then Q, and R, are functions of z alone, and Qoz = - R,. To the next order in E ,  

the velocity V, is determined by the geostrophic equation (4.7) (with a zero 
subscript on the left-hand side and Q1 appearing on the right-hand side). The 
time variation of V, is then determined by eliminating V, from (4.1) and (4.2). 
However, it is well known that this procedure generates the potential-vorticity 
equation, and we shall proceed instead by deriving t,he potential-vorticity 
equation directly. Thus, taking the curl of (4.41)) we obtain the vorticity equation 

+ 2 8  ( E  curl V, + 28) VRxVQ c R *”L+ €R3 + B c n r l F + 0 ( ~ 2 ) ,  I =  
9 3 1 2  

where F=-  DLU+VV,.U+hK2U-k-V. DT k ( - w* ( k - n w / K 2 ) ) .  (4.21) 

Ertel’s theorem states that, if 

then (cf. Pedlosky 1971) 
DLxIL’T = 7, (4.22) 

ecurlF VRxVQ DT D, (‘e curl VL; 2Q). V x  ) = v x ( T +  &3 . vy + O(E2). 

(4.23) 

The potential-vorticity equation is now generated by choosing x to  be a function 
of R and Q (so that Vx.VR x VQ is zero) for which y is 0 ( e 2 ) .  An appropriate 
choice is x = S,  where S = S(R,  Q) is the entropy associated with the mean flow. 
Then 

(4.24) 
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where A is a thermodynamic coeEcient, and is the ratio of the specific heat a t  
constant pressure to the product of the temperature and the coefficient of thermal 
expa.nsion ( A  is constant for ail ideal gas). Hence, from (4.3) 

DLX/DT = O(e2) .  (4.25) 

Also v s  - = F N ' ~ - - ~ Q x V L - - + O ( E ~ ) .  VHR 
A C2 R (4.26) 

Subst'itution of x = 8 into (4.23) then gives 

2!2ilF"] = AN2 Tk.curlF+O(e). (4.27) 

It may be shown that 

k .  curl F = D,{k. curl U}/DT + k .  curl ( k 2 U )  + O(E).  (4.28) 

A lengthy calculation of the left-hand side of (4.27) then gives the result 

- - ~ { k . c u r l U } + k . c u r l ( h K 2 U ) + 0 ( e ) ,  DT (4.29) 

where DL,/DT G a/aT + V , .  V, (4.30) 

and 2122,- RoVL = k x V H Q ,  + O(C). (4.31) 

Here t'he subscripts zero denote quantities evaluated a t  (Ro, Qo),  which are func- 
tions of Z alone. The quantity in the brackets on the left-hand side of (4.31) is 
the potential vorticity, and the equation thus describes the generation of 
potential vorticity by the waves. 

Appendix A. Derivation of the wave action equation 
In  5 2 it was shown that bhe equations governing the wave amplitude and phase 
are (2.35), i.e. 

( v  . F + N-2rH + R-lq16> = 0, 

( v g  . F + N-2r, H + R-lq, I,) = 0. 

(*4 1)  

(A 2) 

Here I,, F and H are given by (2.20), (2.21) and (2.22) respectively, and v and r 
aregiven by (2.23)-(2.26) [qis thengiven by (2.16)]. Thus substituting the expres- 
sions for I,, F and H into (A 1 )  gives 

( v .  Dv/DT + v .  { v .  VV} + rv. 2 8  x V + R-1v. Vg 

F w*rq6 +- - r v .  2!2 x V + -  - tR E RC2 E RC2 ( I$ 
rv,.V,R F 1 

+N-2 r-+ 
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Here V = p/R is the kinematic viscosity evaluated a t  (Q ,  R). Then, using (2.15)- 
(2.17) (with the right-hand sides O ( E ) ) ,  which relate the variables v, r and q, it  
follows that 

x .  {(qv) . VV} (251 x v,. {v.  VV}) - D 
-(& / V ~ ~ + ~ ~ ~ / N ~ ) + R - ~ V . ( P . V } +  w*R DT w* 

' r v H ) . V H R - ~ ( r v ) . 2 5 1 x V + ~ - l E ~ 2 ( ~ 1 ~ / 2 + & 2 )  = O(E) .  
4- eRN2 N2R 

Now, from (2.29), 
R($ Iv(2+ ir2/N2) = 8, 

and explicit calculation shows that 

(qv) = 6c, (A 6) 

where c is the group velocity (2.28). Next, i t  may be shown that 

where use has been made of (2.13) to relate V,R to V .  Also, explicit calculation 
shows that 

E - ~ E K ~ ( F  lv]2+ uir2) = R-lh~28, (A 8) 

where 

Substitution of these results into (A 4) gives 

D&/DT + V . (8c) + 8%. {c .  VV}/w* + k28 = O ( B ) .  (A 10) 

Now i t  follows from (2.4) that 
x,+Vw = 0, 

and substituting w = w*+x.V into this equation, where W* is given by the 
dispersion relation (2.27), we have 

Dw*/DT + C .  VW* = - K. {c.  VV}. (A 12) 

(Note that (A 12) should also contain, on the right-hand side, a term (Dw*/DT),, 
the explicit derivative ofw* with respect to (X, T ) ,  keeping x fixed; in the present 
context this is proportional t o  DN2/DT and is O(s ) .  However, if Q and R are 
allowed to  depend on T, as well as 2, to leading order in E ,  terms proportional to 
DN2/DT appear in ( A  10) and (A 13) and it may be shown that the equation 
for wave action derived below is still valid. See Grimshaw (1975), where this 
case was considered for a linearized system.) 

Substituting (A 12) into (A 10) gives 

(-4 13) 

or recalling that 8 = w * 9 ,  

e%T + v.  [ g ( c  f v)] f hK29 = o(E). (A 14) 

This is the equation for the conservation of wave action. 
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Equation (A 14), derived from (A I ) ,  is an equation for the amplitude a, and 
does not contain the phase $; (A2) leads to an equation for 9. Indeed it may 
easily be shown, on substituting (2.23)-(2.26) into (A2), t,hat 

D$/DT+c.V$+.. .  = 0, (A 15) 

where the omitted terms do not involve 9 and have not, been displayed as they 
are rather complicated (these terms all involve 2sZ and are identically zero in the 
absence of rotation). 

Appendix B. Derivation of the Lagrangian mean velocity 
In order to relate the Eulerian mean velocity V to the Lagrangian mean 

velocity V, we shall use a modified Lagrangian description of the motion (cf. 
Brethert,on 1971). Let X ,  be the position, a t  time T ,  of an observer moving with 
velocity V,; then X ,  is the solution of the equation 

DLXLIDT = V L ( X L ,  T ) ,  (B 1) 

where DLlDT a/aT + VL. V L  (B 2) 

is the time derivative following V,. The subscript L denotes differentia t,ion with 
respect to X,. The particle displacement, relative to V,, is 5, so that 

x = x, + &&,; x,, T ;  4 ,  (B 3) 

where 6, = s-~O,(XL, T ) .  (B 4) 

Here 5 is periodic, of period Zn, and has zero mean in the phase 0,. (It will be 
shown subsequent’ly that O,(XL, T )  = O ( X L ,  T) . )  Recalling that X = E X ,  and 
letting X L  = EX,, (B 3) becomes 

x = x,+g. (B 5) 

The mean Lagrangian density is p,, defined to be that density which is conserved 
by V,, so that 

DLpLlDT +pLVL.  V, = 0. (B 6)  

PJ = PLY (B 7) 

The equation for conservation of mass is 

where J is the Jacobian of the transformation from xL to X :  

Here cijk is the permutation symbol and the summation convention applies. 
Substitution of (B 5 )  into (B 8) gives 

We now let 
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where rL is periodic and has zero mean in the phase eL. Substitution of (B 9) and 
(B 10) into (B 7),  and subsequent lengthy calculation, shows that 

KL- 5eL = - ~ { V L -  5 + + 5- (EeL - V L x L ) )  + O(e2),  (B 11)  

where x, = V,OL, -0L = -OLT. (B 12) 

The fact that x,. EL is O(E)  is the Lagrangian counterpart of (2.15). It may also 
be shown that RL differs from pL by terms O(s2). 

We are now in a position to examine the relation between Eulerian and 
Lagrangian means. The Eulerian phase, using (B 3) and (B l l ) ,  is given by 

where 

The fact t,hat O ( X , T )  and O ( X , , T )  differ by terms O(s2) means that we may 
identify the Lagrangian phase O,(X,, T )  with O(X,, T ) ;  then 

8 = eL+ca, 
and any fuiiction periodic in 8 may be expressed in terms of a series of functions 
periodic in 0,. Hence iff(8; X, T) is some quantity expressed in terms of Eulerian 
variables, we find that 

f(8; X, T) = f(e, +€a; X L + e g ,  T) =f(e,, X,. T) + E ( a f @ + E .  O f )  + O(s2) .  (B 14) 

To leading order in 8, Lagrangian and Eulerian means agree, but t'here is an O(s)  
difference, given by 

(B 15) cf>L = (f> +4afL9 + 5 * Vf) + 
Here a subscript L denotes a Lagrangian mean. Applying the relation (B 14) t,o 
the density p shows that 

rL = r+g.VR/R+O(e) ,  (B 16) 

and RL (t'he Lagrangian mean density) differs from R (the Eulerian mean density) 
only by terms O(s2); both differ from pL by terms O(e2) .  

The velocity u is obtained by differentiating (B 3) with respect to  the time: 

u = VL-wg5OL+~DL5/DT, (B 17)  

where = W L  - X L  . VL. (B 18) 

V = - - 0  ZSBL + O ( 4  (B 19) 

and V ,  = V + B ( ~ L V ~ + ~ . V V ) + O ( E ~ ) .  (B 20) 

Since this is just V + v (in Eulerian terms), i t  follows from (B 14) and (B 15) that 

Using (B 13), (B 16) and (B 19), this last result takes the form 

V L  = V + e(rv) + sR-IV. (REV) + O(s2). (B 21) 

We conclude this appendix with a demonstration of how the equations (4.1)- 
(4.3) involving the Lagrangian mean velocity may be derived using Lagrangian 
means (cf. Bretherton 1971). The Lagrangian equations of motion are (B 6) and 
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(B 7) (conservation of mass), (1.6) (conservation of entropy) and (1.5) (conserva- 
tion of momentum) ; (1.5) may be rewritten as 

where 

au PLk  J pL- +p,2sZ x u + - +z V p  = e E,uV2u + . .. , 
at E 

- -u* -+s- a DL d 
at eL 80, DT' 
_ -  

Since R differs from p L  only by terms O(s2) ,  (4.1) is just (B6); averaging (1.6) 
with respect to  0, gives (4.3), and similarly averaging (B 22) gives 

(B 24) 
epL - DVL +pL ZQ x V ,  + p$ + E - ~ ( J v ~ ) L  = 0(€2). 

DT 

where 

Hence E - y ~  aplaxi)L = c-1 a(Caip)IaxLa. (B 27) 

A lengthy calculation, which will not be reproduced here, then shows that (B 24) 
agrees with (4.2). 
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